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As part of a program to investigate the linear and nonlinear susceptibilities of acetonitrile in the condensed
phase, we report on the accurate calculation of the molecular electric properties of acetonitrile, taking into
account geometry and basis set effects, static and dynamic electronic correlation, vibrational contributions,
and frequency dispersion. All correlated single reference state methods as well as the multireference SCF
with a Møller-Plesset second-order perturbation correction (MRMP2) yield similar values for the electronic
contribution to the polarizabilityR and the second hyperpolarizabilityγ. For the first hyperpolarizability,
however, differences between the highly correlated methods CCSD(T) and MRMP2 remain. Vibrational
contributions to the electric properties are calculated analytically and using two numerical finite difference
methods at the Hartree-Fock level and at the correlated second-order Møller-Plesset level using finite field
difference methods. Basis set convergence and convergence with the level of anharmonicity are examined.
Computed values of the quantityµâ|(-2ω; ω, ω)/(3kT) + γav(-2ω; ω, ω, 0) agree with temperature-dependent
experimental values at two different frequencies within 10%. Using the highest correlated methods, liquid-
phase susceptibilities are computed in the dipolar Onsager reaction-field approximation. Excellent agreement
with experiment for the relative permittivity and the refractive indices is found as well as acceptable agreement
for the nonlinear susceptibility.

1. Introduction

The ab initio calculation of molecular hyperpolarizabilities
has reached a state of high accuracy due to increasing computing
power and recent advances in the development and implementa-
tion of sophisticated models for the treatment of electronic
correlation, frequency dispersion, vibrational contributions, and
relativistic corrections. However, experimental data are usually
obtained from measurements on condensed phases, and the
computation of condensed-phase susceptibilities is still much
less developed. Several self-consistent ab initio methods have
been developed in the continuum approach to the molecular
environment in a liquid and have been applied to computations
of the susceptibilities of solutions and pure liquids.1-4 However,
these models ignore the molecular structure of matter and may
miss effects due to long-range intermolecular correlations that
do not manifest themselves in the necessary experimental input
parameters (i.e., the relative permittivity and/or the refractive
indices). Much evidence points to the existence of local structure
in polar, aprotic liquids.5,6 Potential effects of this molecular
ordering on linear and nonlinear optical properties of the liquid
could be revealed by discrete local-field models explicitly
considering the discreteness of the charge distributions of the
surrounding molecules, as employed for molecular crystals.7,8

Similar methods can be applied for pure molecular liquids,4,9

where the liquid structure is calculated by molecular simulation
methods.

Acetonitrile should be a good test case to search for local
structure effects on the susceptibilities of the liquid. A wealth

of experimental data suggests a strong local order in the liquid
with a pair ordering extending to neighbors beyond the first
shell of surrounding molecules.5 Recently, delocalized collective
modes of molecular reorientation have been suggested to explain
the occurrence of hyper Rayleigh scattering-intensity ratios
incompatible with localized modes.6 Reference values in the
form of experimental data for the electric-field-induced second-
harmonic generation (EFISH) process of acetonitrile in the gas
and liquid phases exist at two different frequencies.10,11 From
the computational side, acetonitrile is a small molecule, so highly
correlated methods and large basis sets can be used.

Any successful and convincing prediction of macroscopic
susceptibilities must be based on accurate and complete electric
properties of the free molecule. Several high-level computations
of hyperpolarizabilities of acetonitrile have been published
before,10,12,13 and good agreement of computed first10 and
second12 electronic hyperpolarizabilities with experimental gas-
phase values at one frequency has been claimed (but not for
both quantities at the same time). However, no systematic
convergence study of these properties with increasing basis sets,
including dynamic and static correlation and frequency depen-
dence, has been undertaken. Neither has the effect of vibrational
contributions been taken into account in a quantitative manner.
In this first part of our investigation, we will report on the
accurate computation of the molecular electric properties of
acetonitrile, taking into account all of the above-mentioned
effects. By comparing with experimental gas-phase results, we
will try to establish a converged method/basis set combination
that will allow the computation of the molecular properties in
the macroscopic phases. An application to liquid acetonitrile in* Corresponding authors. E-mail: hreis@eie.gr. E-mail: mpapad@eie.gr.
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a simple reaction-field model, the dipolar Onsager model, will
be reported. In the second part, we will compute the linear and
nonlinear susceptibilities of liquid and solid acetonitrile in
discrete local-field models.

Following the conventions in computational chemistry, the
molecular electrical properties will be given in atomic units (au).
All other quantities will be given in SI units. The SI unit system
will also be followed in the theoretical section. Conversion
factors for the electric properties areµ: 1 au) 8.478× 10-30

C m,R: 1 au) 0.16487× 10-40 C2 m2 J-1, â: 1 au) 0.32066
× 10-52 C3 m3 J-2, γ: 1 au) 0.62360× 10-64 C4 m4 J-3.

2. Methods

2.1. Electronic Contributions. The electronic electric prop-
erties were calculated by employing the following wave function
models: self-consistent field (SCF), second-order Møller-
Plesset perturbation theory (MP2), restricted active space self-
consistent field (RAS),22 multireference SCF with Møller-
Plesset second-order perturbation (MRMP2),14,15 and several
models in the coupled-cluster (CC) hierarchy: CC with singles
and the contribution of doubles arising from the lowest order
in perturbation theory, CC2;17 coupled cluster with singles and
doubles (CCSD);16 and CCSD with a perturbational treatment
for connected triples, CCSD(T).18 Finite field derivative tech-
niques19 were used to calculate the static properties of the SCF,
MP2, MRMP2, and CCSD(T) models using Gaussian 9820 for
SCF, MP2, and CCSD(T) and GAMESS21 for MRMP2. Static
and frequency-dependent properties were calculated analytically
with the response theory implementation in the program package
Dalton23 at the SCF level in the random-phase approximation
(RPA) and at the RAS,24 CC2, and CCSD25,26 levels. CC2 and
CCSD are orbital-unrelaxed whereas CCSD(T) includes orbital
relaxation effects.27 A comparison of the hyperpolarizabilities
from finite field calculations at the SCF level using different
base electric-field values with the analytically derived properties
at the RPA level led to the choice of a base field value of 0.003
au for all finite field computations.

In most of the RAS calculations, we employed the same active
space as that used by Norman et al.12 in their study of
acetonitrile: the valence orbitals 4-7a1, 1e constitute the RAS1
space, where the number of electrons is kept between 10 and
12, the complete active space RAS2 consists of 4 electrons
distributed without restriction in the four orbitals 2-3e, and
RAS3 consists of the orbitals 8-11a1 and 4e, with the electron
occupation restricted between 0 and 2. A clear separation in
the MP2 natural orbital occupation numbers calculated with
Sadlej’s Pol basis set28 was noted by Norman et al. as the
motivation for the choice of these active spaces. We observed
comparable separations with the basis set employed by us; all
orbitals with occupation numbers larger than 0.01 were included.
The active space for the MCSCF wave function used as the
reference function in the MRMP2 calculation was the same as
that for RAS2. We also performed a static second RAS
calculation, where the RAS1 and RAS2 spaces and all numbers
of maximum and minimum electrons were unchanged, but the
RAS3 space consisted of a total of 16 orbitals instead of 6,
including all orbitals with natural MP2 orbital populations larger
than 0.003 electrons, where a second clear separation in MP2
natural orbital occupation numbers occurs.

As basis sets, we employed the series of correlation-consistent
basis setsn-aug-pVNZ developed by Dunning and co-
workers,29-34 which allow for the systematic improvement of
the basis by increasingn and/orN. It has been shown that with

these basis sets it is possible to obtain frequency-dependent
second hyperpolarizabilities of atoms and small molecules in
very good agreement with experiment.27

2.2. Geometry. For most calculations, the experimental
geometry of Costain,35 which is based on effective nuclear
positions derived from isotopic differences in rotational con-
stants, has been used. This “rs” geometry is considered to be
very close to the geometry based on atomic equilibrium
positions.35 To explore the effect of the geometry on the
calculated properties, some calculations were also performed
at ab initio optimized geometries. Bond lengths and angles of
experimental and some selected optimized geometries are
collected in Table 1. The agreement between the different
geometries is generally satisfactory, except for the N-C bond
length, which becomes 0.03-0.06 Å longer on going from the
SCF level to the correlated levels, with the experimental values
in between. However, our data suggest that the equilibrium
values are approached with an increasing level of correlation
and larger basis sets. This is also supported by the calculations
of Bak et al.,36 which show that the experimental C-N bond
length of HCN, which is very close to that of acetonitrile, can
be accurately reproduced with a cc-pCVQZ basis set at the
CCSD(T) level.

2.3. Vibrational Contributions. Accurate calculations of
hyperpolarizabilities should take vibrational corrections into
account. These may be separated into pure vibrational (PV) and
zero-point vibrational average (ZPVA) corrections. PV correc-
tions in the static limit can be quite large, but they are usually
strongly quenched at optical frequencies. The dispersion of
ZPVA corrections, however, generally resembles more closely
the dispersion of the electronic contribution.37,38

We calculated PV and ZPVA corrections according to
Bishop-Kirtman perturbation theory (BKPT),29,37 where the
perturbation terms are sorted according to the level of mechan-
ical and electrical anharmonicities. The evaluation of the BKPT
equations for the vibrational corrections requires a knowledge
of the second and higher-order derivatives of the energy with
respect to normal coordinates and mixed derivatives of a
different order with respect to the field and the normal
coordinates. Using the symbolic notation of Bishop and Kirtman
concerning the level (n, m) of electrical (n) and mechanical (m)
anharmonicities, the first-order term of the ZPVA correction
PZPVA to a propertyP may be written as

whereQa are the normal coordinates,ωa are the corresponding
vibrational frequencies, andFabb are elements of the matrix of
third-order derivatives of the energy with respect to the normal
coordinates (cubic anharmonic force constants).P may be any
component ofµ, R, â, or γ, and Pel denotes the electronic

TABLE 1: Bond Lengths (Å) and Angles (deg) of
Experimental and Optimized Geometries of Acetonitrile

rN-C rC-C rC-H ∠HCC ∠HCH

exptl ref 36 1.1571 1.4584 1.1036 109.45 109.49
SCF/aug-cc-pVDZ 1.1364 1.4690 1.0873 109.55 109.39
SCF/aug-cc-pVTZ 1.1266 1.4641 1.0802 109.66 109.28
MP2/cc-pVDZ 1.184 1.4692 1.1002 110.02 108.92
MP2/cc-pVDZ 1.169 1.4575 1.0866 109.97 108.97
RAS/d-aug-cc-pVDZ 1.1705 1.4876 1.1059 109.83 109.11
CCSD(T)/aug-cc-pVDZ 1.1780 1.4819 1.1024 109.71 109.23

PZPVA ) [P]1,0 + [P]0,1 ) -
p

4
∑

a [∑b

Fabb

ωbωa
2

∂Pel

∂Qa

-
1

ωa

∂
2Pel

∂Qa
2 ]
(1)
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contribution toP. Using the same (m, n) notation, PV contribu-
tions can be written as39

where [ ]0 ) [ ] 0,0, [ ] I ) [ ] 1,0 + [ ] 0,1, and [ ]II ) [ ] 2,0 + [ ] 1,1

+ [ ].2,0 These bracketed terms are functions of derivatives of
a different order of the energy with respect to the normal
coordinates and fields; for the explicit expressions, see ref 39.
Equations 2-4 show that, contrary to the ZPVA contributions,
equations for the PV contributions have been derived beyond
the first nonvanishing order in perturbation theory, which allows
for a check of the initial convergence of the perturbation series
for PV contributions. At the lowest level of approximations
the double-harmonic approximationsonly the [ ]0 contributions
are retained.

At the static SCF level, some of the derivatives can be
calculated analytically with CADPAC, version 5.40 In a slightly
modified “mnopq” notation of ref 41, wherem, n, o, p, andq
refer to the order of derivatives with respect to the normal
coordinates of the energy, dipole moment, polarizability, and
first and second hyperpolarizabilities, respectively, the highest
level of derivative that can be computed with CADPAC5 is
43210. This allows for the computation of all terms forRPV in
eq 2 and all [ ]0 and [ ]I and many of the [ ]II terms forâPV and
γPV. However, ZPVA corrections to the hyperpolarizabilities
cannot be computed at this level.

A more generally applicable method uses numerical deriva-
tives employing geometrical displacements.41 However, if
second derivatives are needed, as in the case of the ZPVA
correction, then this method quickly becomes prohibitive for
larger molecules and/or at correlated levels. An alternative for
the calculation of mixed-field/normal coordinate derivatives is
the numerical derivation of the gradient (Fa ) ∂V/∂Qa) or
Hessian (Fab ) ∂2V/∂Qa∂Qb) with respect to the electric field,
for example, for the second hyperpolarizability componentsγijkl

according to

We calculated the derivatives at the SCF and MP2 levels with
the Gaussian 98 program package. The Hessian at the MP2 level
was calculated numerically because the analytical computation
with applied fields, although in principle possible, appears to
be erroneous in our release of Gaussian 98 (Revision A.9).42

According to ref 43, this problem has been resolved in Revision
A.10. We used a base field value of 0.003 au for the numerical-
field derivative calculation. Comparison with derivatives cal-
culated analytically or with the numerical geometry displacement
method showed that this value is adequate for a stable numerical
derivative. The cubic anharmonic force constantsFabc were
calculated using the finite geometrical displacement method.41

At the level thus achieved, 32222, static ZPVA contributions
to all electric properties can be computed. A disadvantage of

this method is that ZPVA contributions can be calculated only
in the static limit. It has been shown in refs 44 and 45, however,
and may be corroborated by data in refs 46 and 47 that the
ZPVA dispersion may be approximately given by multiplicative
scaling factors derived from electronic dispersion functions,
although a recent investigation has found that in some cases
the electronic dispersion of the polarizability is slightly smaller
than the ZPVA dispersion.38

All vibrational contribution computations were performed at
the geometry optimized with the respective wave function.

2.4. Reaction-Field Model in the Dipolar Onsager Ap-
proximation. Macroscopic susceptibilities employing the On-
sager reaction-field model were calculated as described in ref
4, following Wortmann and Bishop,48 including a correction
pointed out by Munn et al.49 The linear susceptibilityø(1)(ω)
and the EFISH susceptibilityø(3) in this model are given by

where N is the number density andεω is the frequency-
dependent dielectric constant, equal to the square of the
refractive indexn(ω) at an optical frequencyω and equal to
the static dielectric constantε at zero frequency. The effective
dipole moment is assumed to lie along the molecularz axis,
with µz

eff its component.f zz
C0 is a cavity field factor to be

defined later,Rav
eff(ω) ) 1/3ΣjRjj

eff(ω) is the mean effective
polarizability, theδω0 factor signifies that the orientational part
associated with it disappears at optical frequencies,â|

eff )
1/5Σi(âzii

eff + 2âizi
eff) is the vector component of the effective first

hyperpolarizability in the direction of the dipole moment, and
γav

eff ) 1/15ΣjΣk(2γjjkk
eff + γjkkj

eff ) is the mean effective second
hyperpolarizability. The hyperpolarizabilities are defined ac-
cording to the Taylor expansion of the dipole moment (this is
the “T convention” of ref 50) whereas the susceptibilities are
defined according to the expansion of the macroscopic polariza-
tion without numerical prefactors, corresponding to the “B
convention” of ref 50.

If an ellipsoidal cavity with half-axesai is chosen to contain
the molecule, with the half-axes coinciding with the molecular
symmetry axes, then the effective properties are given by48,49

where

RPV(-ω; ω) ) [µ2]0 + [µ2]II (2)

âPV(-ω; ω1, ω2) ) [µR]0 + [µ3]I + [µR]II (3)

γPV(-ω; ω1, ω2, ω3) )

[R2]0 + [µâ]0 + [µ2R]I + [µ2R]II + [µâ]II + [µ4]II (4)

∂γijkl

∂Qa
)

∂
4Fa

∂Ei ∂Ej ∂Ek ∂El
(5)

∂
2γijkl

∂Qa∂Qb
)

∂
4Fab

∂Ei ∂Ej ∂Ek ∂El
(6)

ø(1)(ω) ) ε
ω - 1 ) N

ε0[µz
effµz

eff

3f zz
C0kT

δω0 + Rav
eff(0)] (7)

ø(3)(-2ω; ω, ω, 0) )

N
6ε0

[µz
effâ|

eff(-2ω; ω, ω)

kT
+ γav

eff(-2ω; ω, ω, 0)] (8)

µz
eff ) f zz

C0Fzz
0 µz

sol (9)

Rjj
eff(ω) ) f jj

CωFjj
ωRjj

sol(ω) (10)

âjkl
eff(-2ω; ω, ω) )

f jj
C2ωFjj

2ωf kk
Cωf ll

CωFkk
ω Fll

ωâjkl
sol(-2ω; ω, ω) (11)

γjklm
eff (-2ω; ω, ω, 0) )

f jj
C2ωFjj

2ωf kk
Cωf ll

CωFkk
ω Fll

ωf mm
C0Fmm

0 γjklm
sol (-2ω; ω, ω, 0) (12)
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The definition of the depolarization factorsκi is given in ref
48. The superscript “sol” denotes a “solute” property (i.e., the
respective molecular property in the presence of the static
reaction fieldER). The components of this field in the dipole
approximation are given by

whereµ0 is the dipole moment of the isolated molecule. This
field and the solute properties can be calculated in a self-
consistent manner as described in ref 4.

A crucial point in the Onsager model is the choice of the
cavity. As is well known, the choice of the form and magnitude
of the enclosing cavity in the Onsager model is not clearly
defined and furthermore has a large influence on the calculated
properties. Luo et al. describe a method to determine a unique
spherical radius for any given wave function by requiring that
the static equation for the linear susceptibility in the Onsager
description (eq 7) be fulfilled.51 This method has been used by
Norman et al. in their calculation of the nonlinear susceptibilities
of liquid acetonitrile in the reaction-field model.12 Considering
lth order spherical multipolar contributions up tol ) 10, they
calculated a cavity radius of 4 Å. This is quite a large value
and leads to a rather small value for the dipolar reaction field
(about 2 GV/m according to eq 16 and the values given for the
RAS model in ref 12). For a compact molecule with a fairly
high dipole moment such as acetonitrile, we would expect the
dipolar term to be the most dominant contribution to the reaction
field; consequently, the susceptibilities calculated by eqs 7-16
are a reasonable approximation for these quantities in the
Onsager model. To determine the axes of an ellipsoidal cavity
for acetonitrile, which is more appropriate for acetonitrile than
a spherical cavity, we used the more standard method of adding
bond lengths and van der Waals radii. Following a suggestion
in the literature,52 according to which a mean distance to the
surrounding solvent molecules has to be taken into account, an
empirical increment of 0.4 Å was added to these axes, leading
finally to (a1, a2, a3) ) (2.44, 2.44, 3.25) Å. The value of the
added increment was suggested to be adequate for dipolar
solutes in nonpolar solvents whereas for polar solvents larger
increments were proposed.53 However, we chose this value
because, first, the volume of the ellipsoid is very close to the
molecular volume derived from the density, which corresponds
to Onsager’s approximation for the derivation of a spherical
cavity radius,54 and second, it turned out that the linear static
and optical susceptibilities of liquid acetonitrile are quite well
reproduced with our choice of cavity dimensions in the dipolar
approximation. We note that the cavity radii given by Willetts
and Rice in ref 13 are different from ours; it is not clear to us
how these values were obtained.

3. Results and Discussion

3.1. Gas-Phase Properties. 3.1.1. Electronic Contribu-
tion: Influence of Basis Set, Correlation, and Dispersion.

On the left side of Table 2, we show the results of a basis set
study of the static properties of acetonitrile at the SCF level.
The molecularz axis is oriented along the C-C-N axis,
pointing from N to C; one of the C-H bonds lies in theyz
plane. All symmetry-unique components are shown, although
âyyy does not contribute toâ|

el but may be used to calculate the
hyper Rayleigh scattering signal.11 We employed the correlation-
consistent basis setsn-aug-cc-pVN Z using single augmentation
up to pentuple-ú (N ) 5) quality and double (n ) d)
augmentation up to triple-ú (N ) T) quality basis sets.

The dipole moment and linear polarizability components are
already quite converged with the smallest basis set, aug-cc-
pVDZ. An exception isRxx

el, which is about 2% smaller with
aug-cc-pVDZ than with the other basis sets. For the diagonal
component of the first hyperpolarizabilityâzzz

el , convergence
sets in after the singly augmented double-ú basis set: the value
increases about 15% from aug-cc-pVDZ to d-aug-cc-pVDZ and
remains at the larger value within a margin of 4% with the other
basis sets. The value ofâxxz

el is more variable with the basis set.
At the singly augmented level, the absolute value decreases
monotonically in the sequenceN ) D, T, Q, 5, reaching a
converged value at theN ) Q basis set. In the sequence of the
doubly augmented basis sets, this limiting value is reached at
N ) T. Because of the opposite sign of theâxxz

el and âzzz
el

components, the value ofâ|
el is rather small and quite variable

with respect to the basis set, ranging from-4 to +4 au.
For the second hyperpolarizabilityγel, the convergence is

smoother. With the exception of the singly augmented basis
sets withN ) D and T, all sets yield approximately the same
values, with maximum differences of 2-8% for the single
components and 5% for the mean quantityγav

el .
A similar convergence pattern to that found at the SCF level

is found at the correlated MP2 level, as shown in the middle of
Table 2. However, the componentâxxz

el , although still basis set-
dependent, is much smaller in absolute magnitude compared
with the values at the SCF level whereasâzzz

el is nearly 3 times
larger. As a consequence, the relative variance ofâ|

el is quite
small (7%) among the three largest basis sets investigated at
the MP2 level.

We conclude from the data of the two Tables that the smallest
basis set yielding nearly converged values for all electrical
properties at the correlated level is d-aug-cc-pVDZ.

Finally, we also compare in Table 2 static data at different
levels of correlationsSCF, MP2, CC2, CCSD, CCSD(T), RAS,
and MRMP2sobtained with the d-aug-cc-pVDZ basis set.
Considering first the single-reference methods, we observe that
the CC2 method clearly overshoots polarizabilities and second
hyperpolarizabilities compared with the other wave functions.
Similar behavior has been found previously (e.g., by Ha¨ttig and
Jørgensen in ref 27). The first hyperpolarizability components
computed at the CC2 level, however, are in line with the general
trend. The componentâxxz

el is small and approximately inde-
pendent of the MP and CC levels;âzzz

el , however, decreases by
5 au (14%) from MP2 to CCSD(T) after the sharp increase by
a factor of 3 from SCF to MP2. The values at the orbital-
unrelaxed CCSD and the orbital-relaxed CCSD(T) levels are
generally quite close to each other, as also found in other
investigations.27,55 Only for the âzzz

el component do we find a
drop of nearly 3 au (8%) caused by connected triples and orbital
relaxation effects. The values of theγiijj

el components agree
very well among the three correlated levelssMP2, CCSD, and
CCSD(T)swith a maximal difference of 5% for theγzzzz

el

component.

f ij
Cω ) ε

ω

ε
ω- ki(ε

ω - 1)
δij (13)

Fjj
ω ) 1

1 - f jj
RωRjj

sol(ω)
with (14)

f ij
Rω )

3κi(1 - κi)(ε
ω - 1)

4πε0a1a2a3[ε
ω - κi(ε

ω - 1)]
δij (15)

Ei
R ) f ii

R0Fii
R0µi

0 (16)
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Employing a multiconfigurational reference function yields
rather different values for the electrical properties. As noted by
Norman et al.,12 values for the polarizabilities and second
hyperpolarizabilities computed at the RAS level are close to
the values at the uncorrelated SCF level. However, at the
MRMP2 level, using the same reference function as in the
complete active space of the RAS calculation, both properties
are similar to those calculated in the correlated single-
configurational reference-state methods MP2, CCSD and CCSD-
(T), with the maximal difference of 574 au (9%) for the
componentγzzzz

el . We conclude, therefore, that both single- and
multiconfigurational methods yield similar values for these
properties if the level of correlation is sufficiently high.

For the first hyperpolarizability, the situation is more
complicated. Here, the two components ofâel are considerably
smaller at the multiconfigurational MRMP2 level than at the
CCSD(T) level, with RAS yielding values in between. To
investigate the effect of larger dynamic correlation on the RAS
wave function, we additionally computed the properties with a
larger RAS3 space spanning 16 orbitals and employing the
d-aug-cc-pVDZ basis set. The average properties found were
Rav

el ) 28.49 au,â|
el ) 15.56 au, andγav

el ) 3078 au. Although
R andγ are only slightly larger than with the smaller RAS space,
â| is now smaller than at the MRMP2 level. Because of this
volatility in the results of the RAS wave function, we consider
both the CCSD(T) and MRMP2 results as our “high-end” results
for the static electronic contribution to the first hyperpolariz-
ability.

All calculations in Table 2 were performed using the
experimental geometry determined by Costain, which is con-
sidered to be close to the equilibrium geometry of acetonitrile.35

To assess the influence of the geometry, we also computed the
electric properties at several ab initio optimized geomtries:
MP2/d-aug-cc-pVDZ, MP2/cc-pVTZ, RAS/d-aug-cc-pVDZ, and
CCSD(T)/aug-cc-pVDZ. As the results for the average quantities
collected in Table 3 show, the optimized geometries consistently
give larger values for all properties, except forâ|

el with the
RAS wave function, where the optimized geometry yields a
lower value. Generally, the geometry effect is not very large,
not exceeding a few percent, and decreases significantly at the
MP2/d-aug-cc-pVTZ//MP2/cc-pVTZ level. As mentioned in
section 2, the optimized geometry will probably converge to
the experimental equilibrium geometry if larger basis sets with
highly correlated methods are applied. We can therefore
reasonably expect that the properties calculated with an “ideal”
basis set/method combination, defined by giving both an
optimized geometry close to the experimental one and converged
properties, will be close to the properties calculated at the highT
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TABLE 3: Average Static Electronic Dipole Moments and
Hyperpolarizabilities of Acetonitrile Calculated with
Different Geometries and Comparison with Selected
Literature Values

method geometry µel Rav
el â|

el γav
el

MP2/daDZ exptla 1.537 29.28 24.16 3775
MP2/daDZ MP2/daDZ 1.550 29.74 27.65 3932
MP2/daTZ exptla 1.544 29.25 23.52 3814
MP2/daTZ MP2/cc-pVTZ 1.550 29.08 26.47 3806
CCSD(T)/daDZ CCSD(T)/aDZ 1.538 29.95 21.72 4079
RAS/daDZ exptla 1.527 27.96 17.44 2984
RAS/daDZ RAS/daDZ 1.539 28.39 17.00 3046
RAS/Polb exptla 1.52 27.93 23.29 3269
MP2[7s6p4d1f/6s3p]c optc 1.53 27.7 27.8 3870
CCSD(T)[7s6p4d1f/6s3p]c optc 1.52 28.9 24.2 4240

a Reference 35.b Reference 12.c Reference 10; a different basis set
was used for properties and optimization.
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end of our calculations at the nonoptimized geometry (i.e.,
CCSD(T)/d-aug-cc-pVDZ and MRMP2/d-aug-cc-pVDZ).

Also shown in Table 3 are some high-level literature values.
The values of Norman et al., using the experimental geometry,
show that the Pol basis set leads to larger values forâ|

el andγav
el

than do the d-aug-cc-pVDZ and d-aug-cc-pVTZ basis sets
whereas the values of Sta¨helin et al., employing a [7s6p4d1f/
6s3p] basis set and an optimized geometry computed at a smaller
basis set, are more similar to ours, although still larger.

In Table 4, the frequency-dependent electronic contributions
are shown, calculated at the RPA, RAS, CC2, and CCSD levels
for second-harmonic generation (SHG) and electric-field-
induced second-harmonic generation (EFISH) processes at the
two base wavelengths at which experimental gas-phase values
are available,λ ) 514.5 and 1064 nm. Forγ(-2ω; ω, ω, 0),
the relationγxxxx ) 2γxxyy + γyxxy, which is valid for C3V
symmetry, has been used to reduce the number of components
shown.

The amount of dispersion may be expressed as the ratioP(ω)/
P(0), whereP is any component of the hyperpolarizabilities.
We chose this kind of representation because we will use these
multiplicative scaling factors in the following to incorporate the
dispersion effect into those methods for which frequency-
dependent values are not available. In Table 5, we have collected
the multiplicative scaling factors for selected components
computed with four different analytical methods. The dispersion
at the RPA/d-aug-cc-pVTZ level is very similar to the dispersion
at the RPA/d-aug-cc-pVDZ level and is not shown. For the linear
polarizability R and the second hyperpolarizabilityγ, the
dispersion is nearly independent of the computational method
used. The same also holds for the componentâzzzbut definitely
not for the nondiagonal componentsâizz andâzzi, for which the
scaling factors vary wildly both with respect to method and
frequency. However, the dispersion of the composite quantity
â| is very similar at all correlated levels but not at the RPA
level, for which a much larger dispersion is obtained than at
the correlated levels. This behavior is due to the very small
magnitude of the nondiagonal components in comparison to the
âzzzcomponent at all correlated levels, which leads to a small

influence of the nondiagonal components on the dispersion of
â|. For the scaling procedure, we will use a component-wise
scaling forR andγ components, but theâ components will be
scaled by the scaling factor ofâ|. The scaling factors computed
at the CCSD level, which we consider to be the most accurate
and which also happen to lie between those of the RAS and
the CC2 methods, will be applied.

Norman et al.12 found a smaller dispersion forâ|(-2ω; ω,
ω) at the SCF/Pol level atλ ) 514.5 nm (1.39), similar to that
at the RAS/Pol level (1.38) and both comparable to those found
here at correlated levels. The smaller dispersion at the SCF level
in this case is again connected with the very small nondiagonal
termsâiiz andâzii. The dispersion ofγav(-2ω; ω, ω, 0) is similar
to the one found here. The dispersion ofâ| calculated by Sta¨helin
et al.10 at the SCF/[7s6p4d1f/6s3p] level is 1.72, which is very
similar to ours. However, the dispersion at the MP2 level (1.12)
appears to be too small.

3.1.2.Vibrational Contributions. The calculation of vibra-
tional contributions is computationally more expensive than that
of the electronic contributions. Studies of convergence behavior
with respect to basis set and electronic correlation are therefore

TABLE 4: Frequency-Dependent Electronic Hyperpolarizabilities of Acetonitrile for SHG and EFISH Processes atλ ) 514.5
and 1064 nm at Different Levels of Correlation with Different Basis Sets (daDZ) d-aug-cc-pVDZ, daTZ ) d-aug-cc-pVTZ)

λ ) 1064 nm λ ) 514.5 nm

RPA
daDZ

RPA
daTZ

CC2
daDZ

CCSD
daDZ

RAS
daDZ

RPA
daDZ

RPA
daTZ

CC2
daDZ

CCSD
daDZ

RAS
daDZ

Rxx
el 24.09 24.10 25.15 24.66 23.68 24.52 24.54 25.64 25.13 24.11

Rzz
el 38.71 38.75 40.35 39.43 37.04 39.69 39.73 41.41 40.43 37.94

Rav
el 28.96 28.98 30.22 29.58 28.13 29.58 29.60 30.90 30.23 28.72

âxxz
el -2.90 -3.59 1.66 1.37 -0.42 -2.64 -3.48 2.94 2.42 -0.02

âzxx
el -2.76 -3.44 2.14 1.76 -0.09 -1.80 -2.66 5.90 4.84 1.92

âyyy
el -6.58 -6.59 -5.02 -5.29 -6.51 -7.98 -8.20 -6.17 -6.53 -8.03

âzzz
el 13.60 14.09 37.93 37.79 32.21 16.94 17.40 46.66 47.78 41.25

â|
el 4.74 4.21 24.94 24.47 18.95 7.33 6.59 32.71 32.54 25.50

γxxxx
el 2521 2711 3240 3001 2325 3431 3655 4418 4060 3047

γzzzz
el 4598 4534 8624 7244 5271 6205 6124 12238 10084 7095

γxxyy
el 838 904 1076 997 773 1136 1223 1450 1339 1006

γxxzz
el 1131 1145 1634 1467 1170 1536 1559 2261 2018 1565

γzxzx
el 1141 1156 1658 1486 1182 1600 1629 2437 2151 1645

γzxxz
el 1142 1154 1660 1488 1183 1596 1611 2425 2138 1641

γxzzx
el 1134 1148 1648 1478 1176 1559 1572 2331 2066 1598

γav
el 3173 3273 4772 4232 3236 4328 4449 6691 5855 4332

TABLE 5: Scaling Factors P(λ)/P(0) for Selected
Components of the Hyperpolarizabilities of Acetonitrile for
λ ) 1064 and 514.5 nm Computed at Different Levels of
Theory

λ ) 1064 nm λ ) 514.5 nm

RPA CC2 CCSD RAS RPA CC2 CCSD RAS

Rxx
el 1.0054 1.0056 1.0054 1.0055 1.02337 1.0252 1.0249 1.0238

Rzz
el 1.0076 1.0080 1.0074 1.0071 1.03306 1.0345 1.0332 1.0315

âxxz
el 1.000 1.177 1.033 0.857 0.910 2.085 2.068 0.041

âzxx
el 0.952 1.518 0.971 0.184 0.621 4.184 4.137-3.939

âzzz
el 1.066 1.062 1.068 1.072 1.328 1.306 1.343 1.373

â|
el 1.145 1.079 1.083 1.087 1.754 1.415 1.438 1.462

γxxxx
el 1.089 1.089 1.083 1.078 1.481 1.485 1.471 1.413

γzzzz
el 1.087 1.101 1.092 1.086 1.467 1.562 1.524 1.462

γav
el 1.086 1.097 1.093 1.084 1.481 1.538 1.512 1.452
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necessarily more limited for these corrections. Fortunately, for
processes at optical frequencies, it often turns out that vibrational
contributions are small compared to the electronic contributions
so that not completely converged values may be tolerated. In
Bishop-Kirtman perturbation theory, the dependence of the
vibrational corrections on the level of anharmonicity included
in the perturbation series should also be checked.43,56 As
mentioned in section 2, with the methods employed by us, this
is possible only for PV contributions.

In Table 6, we have compiled our results for the PV
contributions. The data in the first three columns, for which
analytically computed derivatives of different ordermnopqhave
been used, show that the double-harmonic approximation
captures the largest part of the PV contributions; including
higher-order derivatives leads only to marginal adjustments. In
the case of acetonitrile, the double-perturbation series is therefore
convergent. This is also true at the MP2 level, as the last two
columns of the Table show. Comparison of the data in the
second column (analyt/32210) with those of the fourth and fifth
columns, where numerically computed derivatives have been
used, either calculated by finite differences with respect to
nuclear displacements or with respect to external electric fields,
shows that all three approaches yield similar values. Remaining
small differences can be explained by inaccuracies of the
numerical approach as well as by the use of Cartesian basis
functions in the analytical computations instead of the spherical
basis functions used in the numerical calculations.

Comparison of the data computed with three different basis
setssaug-cc-pVDZ, d-aug-cc-pVDZ, and aug-ccpVTZsat the
SCF level shows that the PV contributions are nearly indepen-
dent of the basis set used (i.e., the aug-cc-pVDZ basis set leads
to values converged with respect to basis set completeness).
Electronic correlation, taken into account at the MP2 level, has
quite a large influence on the PV contributions. All components
of RPV andâPV are considerably reduced at the MP2 level, up
to a factor of 5 in the case ofâzzz

PV, whereas the components of
γPV are generally slightly enhanced. We note that these trends
are in marked contrast to the effect of correlation on the
electronic contributions.

We conclude from our data that PV contributions calculated
with the aug-cc-pVDZ basis set and an order of energy

derivatives that is sufficiently high to allow the simultaneous
calculation of ZPVA contributions (i.e., withmnopq) 32222
yields converged values with respect to order of anharmonicities
and basis set completeness) and that electronic correlation effects
are considerable and need to be taken into account.

In Table 7, the nonvanishing frequency-dependent PV
contributions atλ ) 514.5 and 1064 nm at the MP2 level with
the aug-cc-pVDZ basis set are shown, computed at themnopq
) 32222 level and evaluated in the limit ofωλ . ωvib, where
ωλ is the frequency of the optical light andωvib denotes the
vibrational frequencies. As expected, frequency-dependent PV
contributions are much smaller than the static contributions.
Interestingly, allγPV contributions for EFISH processes are
negative, contrary to ZPVA, static PV, and electronic contribu-
tions.

Similar conclusions concerning basis set and correlation
dependence as for the PV contributions can be drawn in the
case of the ZPVA corrections, as shown by the data collected
in Table 8. Again, all of the properties depend very little on
the basis set, although there is a slightly larger dependence on
additional diffused basis functions forγZPVA than for the PV
corrections. Similarly, a large correlation effect is found for the
ZPVA contributions, resembling more closely the correlation
effects on the electronic properties. We note that the vector
component along the dipole moment,â|

ZPVA, has an opposite
sign to that of the electronic contribution.

TABLE 6: Comparison of Static Pure Vibrational Corrections Calculated with Different Basis Sets (BS, aDZ) aug-cc-pVDZ,
daDZ ) d-aug-cc-pVDZ, aTZ ) aug-cc-pVTZ), Order of Derivatives (mnopq), Correlation Levels, and Derivatives Calculated
Analytically (analyt) or Numerically Using Geometric Displacements (displ) or Finite Field (field) Methods

BS aDZ daDZ aTZ aDZ

SCF MP2

analyt displ field displ field field

mnopq 43210 32210 21110a 32210 32222 32210 32222 32222 21110a

Rxx
PV 0.39 0.42 0.40 0.45 0.45 0.44 0.45 0.24 0.23

Rzz
PV 0.35 0.34 0.28 0.35 0.35 0.35 0.34 0.10 0.05

Rav
PV 0.37 0.40 0.36 0.41 0.41 0.41 0.41 0.20 0.17

âxxz
PV 15.21 16.26 18.17 16.84 16.84 15.99 15.70 10.52 10.80

âyyy
PV -4.50 -4.40 -4.05 -4.40 -4.40 -4.22 -4.26 -4.48 -3.90

âzzz
PV 26.88 25.88 23.63 26.19 26.18 25.86 25.47 5.38 4.57

â|
PV 34.37 35.04 35.98 35.92 35.92 34.71 34.12 15.85 15.71

γxxxx
PV 496 528 397 535 536 565 546 515 488

γzzzz
PV 1721 1704 1613 1696 1694 1703 1660 1924 1913

γxxyy
PV 165 176 132 178 188 188 192 178 169

γxxzz
PV 513 504 737 475 479 451 442 607 741

γav
PV 1019 1021 1124 1004 1012 1003 981 1148 1238

a Double-harmonic approximation.

TABLE 7: Frequency-Dependent Pure Vibrational
Corrections for SHG and EFISH at λ ) 514.5 and 1064 nm
Calculated at the MP2 Level with the aug-cc-pVDZ Basis
Set andmnopq) 32222'

λ/nm 1064 514.5 1064 514.5

âxxz
PV 0.04 0.01 âzxx

PV 0.14 0.03

âzzz
PV 0.28 0.06 â|

PV 0.26 0.06

γxxxx
PV -76 -36 γzzzz

PV -95 -16

γxxzz
PV -26 -10 γxyyx

PV -19 -11

γxxzz
PV -34 -6 γzzxx

PV -54 -27

γzxxz
PV -22 -24 γxzzx

PV -43 -6

γav
PV -273 -104
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3.1.3. Comparison with Experiment. In Table 9, we
compare the experimental values of the electrical propertiesP
) µ, R, â, γ with our calculated total properties at correlated
levels, estimated byPmethod(ω) ) [Pel,method(0) + PZPVA, MP2(0)]
× [Pel,CCSD(ω)/Pel,CCSD(0)] + PPV, MP2(ω) for those methods
where the electronic properties were calculated by finite field
methods or otherwise byPmethod(ω) ) Pel,method(ω) +
PZPVA, MP2(0) × [Pel,CCSD(ω)/Pel,CCSD(0)] + PPV, MP2(ω). The
polarizability anisotropy and the average polarizability of
acetonitrile in the gas phase atλ ) 514.5 nm were measured
by Alms et al.57 The hyperpolarizabilities of acetonitrile in the
gas phase have been determined atλ ) 514.5 nm10 and atλ )
1064 nm11 by temperature-dependent EFISH measurements.

The effect of the vibrational contributions on the total
quantities is quite small forµz, R, and γav, the largest effect
being the positive contribution of 370 au in the case ofγav at λ
) 514.5 nm (about 6-8% depending on the computational
method). The vibrational corrections of-2.3 atλ ) 1064 nm
and-3.3 atλ ) 514.5 nm forâ| amount to a more substantial
change of 10-20%.

The experimental dipole moment and the polarizabilities,
including the polarizability anisotropy, which is generally more
difficult to predict, are quite well reproduced by nearly all of
the methods, with the exception of CC2 and RAS, for which
the deviations are significantly larger than the experimental error
limits. The experimental first hyperpolarizability is increasingly
better approximated in the sequence of single-configuration
reference methods MP2< CC2 < CCSD< CCSD(T) at both
wavelengths. Employing a larger basis set improves the agree-
ment further, as a comparison between MP2/d-aug-cc-pVDZ
and MP2/d-aug-cc-pVTZ shows. Adding the differenceâ|(MP2/
d-aug-cc-pVTZ)- â|(MP2/d-aug-cc-pVDZ) toâ|(CCSD(T))
leads to approximated best values of 25.8 au atλ ) 514.5 nm
and 19.6 au atλ ) 1064 nm. The multiconfiguration reference
methods are not conclusive. Although RAS gives a better value
for â| at λ ) 514.5 nm than CCSD(T), the value atλ ) 1064
nm is far from the experimental value. Furthermore, the higher
correlated MRMP2 method leads to even larger disagreement.

For the second hyperpolarizability of the EFISH process, our
calculated values show a mixed picture: we find very good

agreement with experiment atλ ) 1064 nm with only a 1%
deviation for nearly all methods. The exceptions are, as in the
case of the linear polarizabilities, CC2 and RAS. Forλ ) 514.5
nm, however, the same methods that show good agreeement at
the longer wavelength severely overestimate the experimental
value, as does CC2. Only RAS leads in this case to an again
nearly perfect agreement with experiment, a fact that has been
used by Norman et al. to state thatγav of acetonitrile is described
properly by the correlated RAS wave function.12 However, this
statement appears doubtful in view of our more complete
calculations, which suggest thatall of the methods applied here,
including RAS, overestimate the dispersion ofγav in comparison
with experiment.

Considering the similar dispersion computed with RPA, RAS,
CC2,and CCSD, it is unlikely that insufficient electronic
correlation is the reason for the discrepancy of the dispersion
of γav between theory and experiment. A possible explanation
for the disagreement may be found in the experimental
procedure to determineâ| andγav. These values were determined
by a linear regression of temperature-dependent measurements
of the gas-phase EFISH susceptibilityø(3).10,11The temperature
range accessible for such measurements on acetonitrile is
necessarily rather limited (300-500 K), leading to magnified
uncertainties for the slope and intercept of the regression lines
from which â| andγav are extracted. Instead of comparingâ|

and γav, one may compare directly the primary experimental
quantities〈γ〉 ) µâ|/(3kT) + γav given in refs 10 and 11 with
those computed with the different computational methods, thus
sidestepping the regression analysis step. In doing this, the mean
percentage differences between experiment and computed values
shown in Table 10 result.

For each method, the mean deviations differ between the two
wavelengths by only 2-3%, which lies in the error margins
given by the standard deviations. This may be an indication
that part of the discrepancy found in the dispersion ofγav is
due to an erroneous distribution of the total〈γ〉 values onto the
slope and intercept during the regression analysis, which may
be caused by small systematic errors such as, for example, small
temperature dependencies ofâ| and/orγav.

In any case, the values show that with high-level correlated
methods using large basis sets and including frequency disper-
sion and vibrational contributions, the experimental〈γ〉 values
of small molecules such as acetonitrile can be computed to an
accuracy of about 10%. We note that with this kind of
comparison, the two methods CCSD(T) and MRMP2, which
furthermore bracket the experimental values, appear to be the
most accurate, followed by RAS, CCSD, MP2/d-aug-cc-pVTZ,
MP2, and finally CC2. Unfortunately, the differences between
RAS and the other methods forγav are concealed in the
composite quantity〈γ〉.

3.2. Liquid-Phase Properties Predicted with the Onsager
Model. Linear and nonlinear EFISH susceptibilities of liquid
acetonitrile atT ) 20 °C with a density of 0.786 g/mL58 have
been calculated using the Onsager model as outlined in section
2, employing CCSD(T) and MRMP2 with the d-aug-cc-pVDZ
basis set. The results are shown in Tables 11 and 12. The relative
permittivity ε and the refractive indicesn(ω) needed for the
calculation of the local field factors have been taken from
experiment.10,59

The reaction field calculated at the CCSD(T) level is 3.65
GV/m (0.0071 au) and was also used for the MRMP2 calcula-
tions. For the calculation of the field effect on the electronic
contribution, the field has been included in the Hamiltonian
whereas the field effect on the vibrational contributions was

TABLE 8: Comparison of Static ZPVA Corrections
Calculated with Different Basis Sets (BS), Correlation
Levels, and Derivatives Calculated Numerically Using
Geometric Displacements (displ) or Finite Field (field)
Methods

BS aDZ daDZ aTZ aDZ

SCF MP2

displ field field field field

µz
ZPVA -0.003 -0.003 -0.003 -0.003 -0.010

Rxx
ZPVA 0.73 0.73 0.74 0.72 0.68

Rzz
ZPVA 1.06 1.06 1.07 1.05 1.02

Rav
ZPVA 0.84 0.84 0.85 0.83 0.80

âxxz
ZPVA -2.06 -2.10 -1.98 -2.00

âyxx
ZPVA -0.97 -0.97 -0.92 -0.82

âzzz
ZPVA -2.02 -2.15 -2.22 0.11

â|
ZPVA -3.68 -3.81 -3.71 -2.33

γxxxx
ZPVA 143 165 153 269

γzzzz
ZPVA 277 322 294 431

γxxxx
ZPVA 48 54 50 121

γxxzz
ZPVA 69 82 69 92

γav
ZPVA 187 218 195 316
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computed according to the series expansion equations. The
influence of the field on the vibrational corrections toγ are
thus not taken into account, which should not lead to large errors
for the computed EFISH susceptibility. The effect of the reaction
field on the electric properties follows an established pattern:
although the polarizabilities are very little affected, the first
hyperpolarizabilies are strongly enhanced, and the dipole
moment and second hyperpolarizabilities are moderately changed
by the field. We note that the occurrence of the static PV
contributions in the total static properties leads to values for
the latter that are often larger than the total frequency-dependent
properties. We mention that our in-liquid dipole moment is in
good agreement with the dipole moment of 1.77( 0.04 au
estimated by Ohba and Ikawa from integrated far-infrared
spectra.60

To obtain the dispersion scaling factors including the reaction-
field effect, frequency-dependent hyperpolarizabilities were
computed with the external field at the CC2 and RPA levels at
λ ) 532 and 1064 nm, the two wavelengths for which
experimental EFISH data for liquid acetonitrile are available.10

The dispersion calculated at the two levels is similar: atλ )
1064 nm, the dispersions ofâ|

el and γ|
el are 9.5 and 9.4%,

respectively, at the RPA level and 9.5 and 10.3%, respectively,
at the CC2 level. Forλ ) 532 nm, the dispersions are 47.8 and
47.6%, respectively, at the RPA level, and 48.3 and 54.5%,
respectively, at the CC2 level. The mean of the two computa-
tions was used to calculate the scaling factors. We note that
the dispersion found here is significantly larger than the one
reported in ref 12 using reaction-field response theory for
nonequilibrium solvation. Also, we find a normal dispersion
for the linear polarizability (0.7% at 1064 nm, 2.7% at 514.5
nm) that is contrary to the anomalous dispersion found by
Norman et al. Nevertheless, the experimental static permittivity
ε and the refractive indices fromλ ) 1064 nm down toλ )
266 nm are very well reproduced by the calculations in the
dipolar Onsager model, with maximal deviations of 2.5% for
CCSD(T) and 1.9% for MRMP2. Because the relationships
between the permittivities and microscopic quantities have been

used in ref 12 to determine the cavity radius and the local field
factors, a comparison with experimental quantities is not useful
in this case.

The local field factors using an ellipsoidal cavity are smaller
than those found in ref 12 employing a spherical cavity, which
in turn are smaller than those based on the usual Onsager and
Lorentz expressions; see ref 12. The choice of an ellipsoidal
cavity instead of a spherical one has a considerable effect on
the local field factors: for MRMP2, using the radius of a sphere
of equal volume to that of the ellipsoid, 2.68 Å, andRav

sol yields
a static local field factor of 1.92. This radius is close to one of
the two used by Willetts and Rice,13 2.7 Å. Using instead the
long semiaxis, 3.25 Å, as the radius of a enclosing sphere, which
is close to the second choice (3.22 Å) employed by Willetts
and Rice, together withRav

sol yields a static local field factor of
1.69, similar to the one calculated by Norman et al.12 using CAS/
Pol. EmployingRzz instead ofRav

sol leads to even larger values.
This shape effect is naturally enhanced in the total local field
factor for the EFISH process, which consists of the product of
four single local field factors.

Finally, we compare the computed EFISH susceptibilities in
the dipolar Onsager model with the experimental values. There
are two calibration factors for quartz currently in use,61,62

differing by about 40%, although the smaller and newer of these
values is becoming increasingly more accepted.63-65 The values
in Table 12 show that for both wavelengths and for both
methods the computed values are much closer to the lower
experimental value, with maximal differences of 20%. The
dipolar Onsager reaction-field model therefore also predicts that
the lower of the two calibration factors is more accurate.62 The
same conclusion has been drawn by Norman et al., although
with less complete molecular data and a different application
of the reaction-field model.

4. Conclusions

We have presented a complete study of the hyperpolariz-
abilities of acetonitrile, including PV and ZPVA vibrational
contributions and frequency dispersion. We studied basis set
and correlation effects on the static and frequency-dependent
electronic and vibrational contributions, employing a series of
basis sets designed for a systematic approach of the basis set
limit. Results at the highest level of correlation employeds
single-reference CCSD(T) and multireference MP2sover- and
underestimate, respectively, the experimental EFISH values of
the composite quantity〈γ〉 ) â|µz/(3kT) + γav at two different
wavelengths by about 10%. Larger differences found for the
single quantitiesâ| and γav may be partially attributed to
difficulties arising from the regression analysis of a limited
temperature-dependent set of experimental data. The difference

TABLE 9: Comparison of Experimental and Calculated Electronic Propertiesa

µ Ranis
b Rav â| â| γav γav

λ/nm ∞ 514.5 514.5 1064 514.5 1064 514.5

exptlc 1.542 15.39 30.43 17.9 26.3 4250 4619
errorc (0.024 (1.5%) (0.46 (3%) (0.61 (2%) (1.1 (6%) (0.8 (3%) (575 (14%) (370 (8%)
MP2 1.527 (-1%) 15.43 (0.3%) 30.93 (1.6%) 23.9 (34%) 31.5 (20%) 4200 (-1%) 6080 (32%)
MP2/daTZ 1.534 (-0.5%) 15.42 (0.2%) 30.90 (1.5%) 23.2 (30%) 30.6 (16%) 4240 (-0%) 6140 (33%)
CC2 16.13 (4.8%) 31.72 (4.2%) 22.7 (27%) 29.4 (12%) 4840 (14%) 7060 (53%)
CCSD 15.66 (1.8%) 31.05 (2.0%) 22.2 (24%) 29.3 (11%) 4304 (1%) 6230 (35%)
CCSD(T) 1.515 (-1.8%) 15.79 (2.6%) 31.13 (2.3%) 20.3 (13%) 26.7 (2%) 4290 (1%) 6200 (34%)
RAS 1.517 (-1.6%) 14.19 (-8.5%) 29.54 (-3.0%) 16.7 (-7%) 22.2 (-18%) 3310 (-29%) 4700 (2%)
MRMP2 1.522 (-1.3%) 15.14 (-1.7%) 30.94 (1.7%) 15.1 (-19%) 19.8 (-33%) 4280 (1%) 6190 (34%)

a Computed properties were calculated with the d-aug-cc-pVDZ basis set if not otherwise indicated.b Ranis ) Rzz - Rxx. c µ: ref 67; R: ref 57;
â, γ at 514.5 nm: ref 10; 1064 nm, ref 11.

TABLE 10: Mean Deviation of the Calculated Properties
〈γ〉(T) ) µzâ|/(3kT) + γav from Experimental Values

λ/nm 1064 514.5

MP2 (20( 2)% (23( 2)%
MP2/dTZ (18( 2)% (21( 2)%
CC2a (22 ( 2)% (24( 2)%
CCSDa (16 ( 2)% (19( 2)%
CCSD(T) (7( 2)% (10( 2)%
RAS (-14 ( 1)% (-11 ( 1)%
MRMP2 (-11 ( 2)% (-8 ( 1)%
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between multireference MP2 and CCSD(T) forγ is nearly
completely because of a different prediction of the first
hyperpolarizabilityâ|, which is the result of a delicate balance
between a largeâzzz value and small positive or negativeâzzi

andâizz values. This is reminescent of the similarly difficult to
predict SHG property of HF,55,66 although in that case the
problem is enhanced by even lower values of the components
of â and slower convergence with respect to basis set complete-
ness and correlation treatment.

The main goal of this work was to determine a feasible basis
set/method combination that allows for the computation of an
accurate set of electric properties for a molecular simulation of
the EFISH signal of liquid acetonitrile. We conclude that such
a combination can be either d-aug-cc-pVDZ/CCSD(T) or d-aug-
cc-pVDZ/MRMP2. Frequency dispersion may be taken into
account by CC2 or RPA calculations, except forâ, for which
RPA yields a dispersion that is too large, at least without an
additional external field. Using these two combinations, we also
computed the linear and nonlinear (EFISH) susceptibilities of
liquid acetonitrile in the dipolar Onsager approximation. With

an ellipsoidal cavity determined by standard bond lengths and
van der Waals radii, we found very good agreement with
experiment for the computed static relative permittivity and the
refractive indices over a wide range of optical frequencies and
satisfactory agreement for the EFISH susceptibilityø(3)(-2ω;
ω, ω, 0) at two wavelengths, if the lower of the two calibration
factors currently in use is employed to extractø(3) from the
experimental data. This essentially confirms the conclusions
drawn previously by Norman et al. on the basis of a different
reaction-field model and employing a wave function model
combination of RAS/Pol and CAS/Pol.12 Although they have
used a “parameter-free” reaction-field model by using the
experimetal linear macroscopic properties to derive the cavity
radius and local field factors for the specific wave function under
consideration, this leaves only the EFISH susceptibility as an
independent test case for the wave function/cavity/reaction field
employed. In contrast, our more standard method predicts linear
and nonlinear macroscopic properties independently.

The reaction-field model, however, neglects all intermolecular
correlations whose existence in liquid acetonitrile is supported
by a wealth of experimental data.5,6 Work currently in progress
aims at investigating whether molecular simulation methods are
able to provide information about the influence of such
intermolecular correlations on the linear and nonlinear suscep-
tibilities of liquid acetonitrile.
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